Do you see yourself as a research scientist? Working at the cutting edge of discovering, designing and developing new drugs for clinical purposes? If so, this four-year course is ideal.
You'll explore the sources of medicine, how medicines work, how they can be formulated (such as via tablet, cream or inhaler), administered, analysed and tested.
The course shares its first two years with the Pharmaceutical Science BSc (Hons) programme and provides a wide understanding of all aspects of the pharmaceutical industry. In Year 3 you'll deepen your knowledge of natural product chemistry. You'll develop skills for testing and evaluating the safety and effectiveness of pharmaceutical products. In Year 4 you'll develop skills in experiment design, critical analysis, problem-solving and laboratory work.
Attendance | UCAS code | Year of entry |
---|---|---|
4 years full time | B204 | 2023 (Clearing) 2024 |
Location | Penrhyn Road |
Years 1 and 2 are shared with the Pharmaceutical Science BSc(Hons) course.
Year 1 introduces biology, chemistry and physiology, and pharmaceutical science itself. The Foundation Chemistry for Pharmaceutical Science module introduces formulation science, pharmacokinetics and molecular modelling, emphasising practical work and instrumental techniques. An academic skills module covers mathematics, statistics, generic study skills and information technology, giving you skills valued by employers.
30 credits
This module provides an introduction to basic laboratory techniques and procedures such as weighing and volumetry, proceeding to descriptions of laboratory manipulations, elemental analysis and general practical knowledge. There is included an introduction to spectroscopic techniques in terms of simple theory, as well as a practical introduction to the identification of simple organic compounds. These compounds will sometimes be synthesised in the course of the practical element of the module, which will also serve to demonstrate laboratory techniques of preparation and purification of these organic materials.
30 credits
This is a core module for all chemistry and pharmaceutical science programmes. The module aims to give you a thorough grounding in mathematics, statistics, key and transferable skills (e.g. exam strategy, effective use of calculators, library and referencing, avoiding plagiarism, problem-solving and personal development planning etc.) and IT skills.
30 credits
This is a core module for Pharmaceutical Science degree courses. The module revises some content taught at A-Level before expanding on this content to give foundation knowledge of the core chemistry concepts required for progress within the field of pharmaceutical science.
30 credits
This module introduces the fundamental principles of the biochemical processes that occur within the cell. The module deals with prokaryotic and eukaryotic cell structure, basic tissue types, microbial entities and organisms that include; viruses, bacteria and fungi. In addition, It is designed to introduce cell biology and microbiology, particularly with reference to human physiology and the pathological microorganisms affecting it. The module progresses from the subcellular through to the cellular and then to tissues and a few selected organ systems; examining the mechanisms that maintain homeostatic balance.
On successful completion of the module, you will be able to:
Year 2 places emphasis on organic and medicinal chemistry and develops practical skills, especially in pharmaceutical analysis - important in relation to the actions and characterisation of drugs. Building on the pharmaceutical chemistry learned in Year 1, you will study the properties and formulation of pharmaceuticals. You will also study the effect of drugs in living systems and the principles of the immune system. There will be an introduction to micro-organisms in relation to human disease, their control and safe working practices. Year 2 features a focus on experimental pharmaceutical chemistry, developing skills for conducting independent laboratory investigations. There is also the opportunity to develop other transferable skills, important to your employability and career planning.
30 credits
This is a core module Level 5 module for the Chemistry and Pharmaceutical Science fields.
The module seeks to develop and expand your knowledge of both Organic Chemistry and Medicinal Chemistry subject areas and introduces important principles, reactions and mechanisms in organic chemical reactivity as well as basic mechanisms of drug action. It develops your understanding of the methodology of organic synthesis following concepts introduced at level 4 and includes important organic chemistry topics such as carbanion reactivity of carbonyl compounds, the reactions of aromatic and heteroaromatic compounds, stereochemistry, asymmetric synthesis and retrosynthesis
It also introduces the specific reasons why a small amount of a drug molecule can exert a complex biological response. It uses examples from a range of medicinal areas in order to illustrate these key processes as well as giving an introduction on the ideas of drug design and the role this plays in the modern pharmaceutical industry.
This module also gives you experience of using spectroscopic techniques for chemical structure elucidation. Lectures and workshops are designed to develop your problem-solving and team-working skills. Practical skills will also be developed during two 3-hour laboratory experiments from weeks 9 to 12 of teaching block 1. These experiments will reinforce the concepts of enolate and aromatic chemistry taught during teaching block 1. In teaching block 2, you will present a poster concerning a medicinal natural product, to integrate organic synthesis and medicinal chemistry in a real-world context. This module is essential for those wishing to take the more advanced Level 6 Organic Chemistry modules.
30 credits
This module incorporates elements of pharmacology, toxicology, immunology and pharmaceutics (including formulation science). The module gives a grounding in the processes of absorption, distribution, metabolism and excretion which underlies many of the toxicological and pharmacological effects of biological agents. In addition, how drug formulation affects the bioavailability of a drug and how the physiology of the human system affects these processes will be discussed. The module includes an introduction to immunology which is considered important as recent developments in drug development involve antibodies as therapeutic agents. Major factors involved in the effective and safe delivery of therapeutic agents to human populations will be reviewed.
On successful completion of the module, you will be able to:
30 credits
This module is a core requirement in the Pharmaceutical Science, Forensic science and Biochemistry fields. The module introduces students to the applications of analytical science within analytical biochemistry, clinical chemistry, forensic analysis and the pharmaceutical sciences. It allows you to build your knowledge, practical skills and interpretation skills whilst implementing the analytical process model using scenario-based learning.
30 credits
This module deals with new laboratory techniques to enable development of practical skills and data interpretation through a range of experiments that encompass organic synthesis, drug formulation and pharmacology/immunology. The module aims to provide the skills and methodologies to partake in a research programme, such as literature searching, data analysis and producing a short critical analysis of a research article.
On successful completion of the module, you will be able to:
Year 3 shares some modules with our Pharmaceutical Science BSc(Hons) degree, including a module that deepens your knowledge base in natural product chemistry, and another that develops and enhances your analytical skills, crucial for the testing and evaluation of the safety and effectiveness of pharmaceutical products.
30 credits
This is a core module for Chemistry and M. Pharm. Sci degree courses, and is optional for the BSc. Pharm. Sci. Degree course. The module builds upon and develops further, topics introduced in the earlier level 5 module CH5002, for example, stereoselective synthesis and retrosynthetic analysis. In addition, new topics are introduced such as pharmacognosy, combinatorial chemistry, photochemistry, free radical chemistry and pericyclic reactions. The lectures and associated workshops will encourage the development of problem solving and team working skills, in order to prepare you for your future careers. These skills will be practised during laboratory-based exercises, where you will participate in group "mini-projects" which will be assessed using a range of methodologies that include oral presentations, report writing and poster presentations.
30 credits
This module deals with the pharmacology involved in the treatment of various disease types and details the synthetic chemistry behind the development of drug molecules and evaluates the structure activity effects from pharmacodynamic and pharmacokinetic perspectives. The module also outlines the process for intellectual property protection and exploitation, toxicological events that might affect the body and the body's immunological response to toxic insult or disease.
On successful completion of the module, you will be able to:
30 credits
This module is a core module for the Pharmaceutical Science BSc and Integrated Masters courses. This module aims to address the need for a synoptic/capstone module which draws the whole course together. It introduces various aspects of chemical and pharmaceutical industry pertinent to their future career and aims to cover a wide range of topics covering Drug Delivery, Polymers and Biomaterials, patents, intellectual property, health and safety, and legislation. Many of the descriptive parts of the module are reinforced by workshops and group debate to develop their communication, teamwork and independent learning skills. There are also lectures, workshops and practical sessions to demonstrate and reinforce the concept learnt.
30 credits
This is a core module of MPharmSci (Hons) Pharmaceutical Science and MChem(Hons) Chemistry and an option for BSc(Hons) Chemistry and BSc(Hons) Pharmaceutical Science students. It takes forward the themes of spectroscopy that were introduced in the previous modules and develops a more rigorous theoretical footing and advanced applications. In parallel to this, analytical themes are introduced covering radiochemical analysis, electroanalysis and thermal analysis.
In Year 4, you will spend half of your time working on your research project, enhancing your skills in experiment design, critical analysis, problem solving and laboratory work. The project also provides an opportunity to display initiative and creativity. In addition, you will take advanced masters-level modules in the Manufacture and Clinical Trials of Medicines and Advanced Organic and Medicinal Chemistry.
60 credits
The project module is core for MChem and MPharmSci courses and is designed to foment the necessary conceptual and practical skills in research, which are immediately applicable across disciplines and to enable the development of communications skills for the dissemination of the outcomes of research. Where possible, research should be communicated via publication in a peer-reviewed journal.
30 credits
This is a core module for the MChem Chemistry with Medicinal Chemistry Course.
You will explore the synthetic chemistry behind the development of drug molecules and evaluates quantitatively the structure activity effects from pharmacodynamic and pharmacokinetic perspectives.
You will learn about advanced experimental techniques in spectroscopy and compound separation will be discussed in the context of drug discovery and development. You will also cover intellectual property protection and risks of exploitation.
30 credits
This module introduces you to the different phases and types of clinical trials and the associated legal, regulatory and ethical issues. This includes statistical data analyses and how to manage and review clinical trial data in relation to evidence-based medicine. The technology and application of the manufacture of various medicine formulations are discussed and the place of biotechnological products introduced. The module also covers elements of medicines regulation with particular reference to the UK and European Union. Regulations are dealt with both within a general framework and specific areas including manufacturing, dealing with specialist products, regulation in clinical use, and licensing.
On successful completion of the module, you will be able to:
Optional modules only run if there is enough demand. If we have an insufficient number of students interested in an optional module, that module will not be offered for this course.
Find out more about our Science Foundation Year.
Embedded within every course curriculum and throughout the whole Kingston experience, Future Skills will play a role in shaping you to become a future-proof graduate, providing you with the skills most valued by employers such as problem-solving, digital competency, and adaptability.
As you progress through your degree, you'll learn to navigate, explore and apply these graduate skills, learning to demonstrate and articulate to employers how future skills give you the edge.
At Kingston University, we're not just keeping up with change, we're creating it.
If you would like to join us through Clearing 2023, please call our Clearing hotline on 0800 0483 334 (or +44 020 8328 1149 if you are calling from outside the UK) and speak to our friendly and knowledgeable hotliners who will be able to provide information on available courses and will guide you through your options.
Please note the entry requirements listed below are for 2024 entry only.
Teaching methods include lectures, workshops, tutorials and practical classes.
This course is delivered by the School of Life Sciences, Pharmacy and Chemistry.
The School of Life Sciences, Pharmacy and Chemistry offers an outstanding and diverse portfolio of undergraduate and postgraduate programmes in biological and biomedical sciences, chemistry, forensic science, pharmacy, pharmacological and pharmaceutical sciences, and sport science and nutrition.
We've invested heavily in the development of new facilities including laboratories for teaching and research to provide students with access to ultra-modern equipment in a wide range of teaching facilities.
Postgraduate students may run or assist in lab sessions and may also contribute to the teaching of seminars under the supervision of the module leader.
There is a wide range of facilities for practical work at our Penrhyn Road campus, where this course is based. You will have access to a modern environment with the latest equipment, including:
Depending on the programme of study, there may be extra costs that are not covered by tuition fees which students will need to consider when planning their studies. Tuition fees cover the cost of your teaching, assessment and operating University facilities such as the library, access to shared IT equipment and other support services. Accommodation and living costs are not included in our fees.
Where a course has additional expenses, we make every effort to highlight them. These may include optional field trips, materials (e.g. art, design, engineering), security checks such as DBS, uniforms, specialist clothing or professional memberships.
Pharmaceutical science is a growth area with good job prospects. Graduates work in areas such as research, development, regulatory affairs and pharmaceutical analysis. They also frequently progress to study PhDs.
The scrolling banner(s) below display some key factual data about this course (including different course combinations or delivery modes of this course where relevant).
The information on this page reflects the currently intended course structure and module details. To improve your student experience and the quality of your degree, we may review and change the material information of this course. Course changes explained.
Programme Specifications for the course are published ahead of each academic year.
Regulations governing this course can be found on our website.