Mechatronics is an exciting, growing field that combines mechanical, electronic and control systems to create a complete device. It mostly relates to the mechanical systems that perform relatively fast and precise motions and therefore require sophisticated electronic devices and control algorithms. This hands-on course will help you develop the multidisciplinary knowledge that the fast-moving industrial, commercial and domestic sectors demand of their technical professionals.
The many applications of mechatronics include robotics, autonomous smart systems, hard-disk drives, tracking cameras, intelligent actuators in automotive systems, and intelligent prosthetics. You will be able to apply state-of-the-art control and machine learning techniques while working hands-on with robotics, autonomous unmanned platforms and facilities. You will take part in trips to the National Instruments' NIDays conference in London. With an individual project, you may research a subject of interest with the opportunity to publish your work.
The MSc will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng (Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration.
Mode | Duration | Attendance | Start date |
---|---|---|---|
Full time | 1 year | Delivered in one-week blocks | September 2023, January 2024 and September 2024 |
Full time | 2 years including professional placement | Delivered in one-week blocks plus placement year | September 2023, January 2024 and September 2024 |
Part time | 2 years | Delivered in one-week blocks | September 2023 and January 2024 |
Location | Roehampton Vale |
and different microcontrollers.
The MSc will meet, in part, the academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng(Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration.
It should be noted that graduates from an accredited MSc programme, who do not also have an appropriately-accredited honours degree, will not be regarded as having the exemplifying qualifications for professional registration as a chartered engineer with the Engineering Council; and will need to have their first qualification individually assessed through the individual case procedure if they wish to progress to CEng.
Find out more about Further Learning and discover all accredited degrees by visiting the Institution of Mechanical Engineers website.
Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.
Please check the Engineering Council website for more information.
Although mechatronics may be perceived in combination with robotics, as robots are indeed fast and precise mechanical systems, it also has wider applications. These include hard-disk drives for computers, tracking cameras for surveillance applications, intelligent actuators in automotive systems and many other areas, including devices used in the field of healthcare and rehabilitation, such as intelligent prosthetic devices.
The hands-on approach on the course, using our state-of-the art multidisciplinary laboratories with equipment from National Instruments, Freescale, Agilent Technology, Rethink Robotics and many more, adds value to this postgraduate degree. The course dovetails with research activities of the teaching staff, implementing the latest advances in our research. Using applied research, you will have the opportunity to do your own research within an individual industry-relevant 'capstone' project. This includes preparation of a scientific paper, giving an opportunity for that first breakthrough into publishing your work.
For a student to go on placement they are required to pass every module first time with no reassessments. It is the responsibility of individual students to find a suitable paid placement. Students will be supported by our dedicated placement team in securing this opportunity.
30 credits
This is a core module for engineering students on various taught MSc programmes. The module is designed to provide the student with the research skills and techniques necessary to select and justify a research topic, plan project execution, use various resources to carry out a literature search and successfully complete the project and other module assignments on the course. It also addresses issues related to presentation of technical reports at MSc level and for the purpose of wider publication in learned media.
The module further develops the students' knowledge and skills in business and management, with a particular focus on entrepreneurship and innovation. It supports students in producing proposals for enterprise ideas such as new products or services, or innovations in existing processes or organisations. Concepts of total quality management to enhance quality of products and processes in an industrial setting are presented and application of supporting quality tools and techniques are discussed.
The module content will enhance the students' employability potential in a variety of national and international industrial organisations, or career opportunities in research and development arena. It also equips students with a set of skills to set up their own business in an engineering innovation area should they wish to do so.
30 credits
This module encompasses a range of related fields, such as control and embedded implementation. It introduces classical design and tools for analysis of control systems. Time domain design methods are followed by frequency domain design methods. Although the module mainly deals with continuous-time systems, the discrete-time systems are also discussed. This is followed on by implementation, where sensors and actuators are introduced.
The learning is supported by practical exercises where students design and implement embedded control systems using computer-aided design tools and embedded microcontroller-based systems including real-time industrial computers. In addition to the theoretical concepts, the focus of this module is on implementation, providing students with a set of skills that will enhance their employability. A range of transferable skills gained in this module is aimed to help with the work on the final project and extra-curricular activities available within the School.
30 credits
This module provides high level view on the design of mechatronic and automation systems. Applications and types of such systems are discussed. Main components of mechatronic design are introduced, including mechanical design through specialised software, sensors and actuators, control design, and software development for real-time implementation. A strong feature of this module is the delivery by the academic staff from the Industrial Control Research Group. Theoretical material is illustrated by practical laboratory sessions on real-time design, using industrial standard, state-of-the-art equipment. A range of transferable skills gained in this module is aimed to help with the work on the final project and extra-curricular activities available within the school.
60 credits
This is a core module for MSc courses in the School of Mechanical and Automotive Engineering, forming a capstone experience for students on these courses. The module allows you to research and study an engineering topic which is of personal interest. This will enable you to demonstrate the mastery of your subject and develop your ability to analyse and evaluate specific areas that may not have been previously covered in depth on the course.
The vigorous structure of the module provides you with an opportunity to identify an industry-based (or research-focused) project area, establish a feasible hypothesis, find creditable solutions, analyse results and offer recommendations. The module enables you to acquire and appraise new knowledge and apply individual judgement to solve new and often complex engineering problems using cutting-edge technology. It also allows you to demonstrate high levels of responsibility, organisational capability and effective communication with others including the supervisor, wider research community and other stakeholders. The module also encourages you to recognise, question and deal with the ethical dilemmas that are likely to occur in engineering professional practice and research.
The project applications can be individually tailored to support your career plan and prepare you to tackle real industrial problems with maturity and rationality hence enhancing your employability potential.
30 credits
The module covers advanced CAD/CAM techniques in the conceptual design and manufacture and is heavily focussed on the surface modelling and reverse engineering methods prior to manufacture. Also this module will cover rapid manufacturing methods involving mould design and machining tool path optimisation and full machining simulation verification, and machining collision avoidance.
credits
This module introduces advanced concepts in control design and prepares students for implementation of digital, real-time embedded control systems. The emphasis is on multivariable systems and state-space models. Furthermore, the module provides mathematical tools to analyse the dynamic behaviour of mechanical parts of a robot, eg a robot arm. It is further extended to cover mobile robots workspace exploration. The robot control architecture is discussed and the notion of intelligent robots is introduced. Finally, the robot's communication with external world, sensors and actuators are explored. A strong feature of this module is the delivery by the academic staff from the Industrial Control Research Group, using industrial state-of-the-art equipment.
credits
Digital signal processing is a pervasive tool in the modern world, though much of its use is embedded within specialist software and hardware. Most modern instrumentation systems will employ DSP algorithms to analyse sensor readings, and in some cases (eg flight control systems) automatically initiate appropriate responses. Mobile phone technology is singularly dependent on the ability of DSP algorithms to extract meaningful information from broadcast signals. DSP algorithms underpin the revolution in the availability of digital video and audio recordings.
This module is a core module in Embedded Systems field and the Digital Image and Signal Processing field, and an optional module in other computing and information system postgraduate fields. It introduces you to the fundamental concepts of digital signal processing and prepares you to understand how to represent, analyse and manipulate digital signals, providing a theoretical background as well as practical work. It also equips you to evaluate, design with and programme digital signal processors, considering their architecture and features and matching these to embedded applications. Practical work covers installing the development tools for a digital signal processor and using them to produce a working application.
120 credits
The Professional Placement module is a core module for those students following a masters programme that incorporates an extended professional placement. It provides students with the opportunity to apply their knowledge and skills in an appropriate working environment and develops and enhances key employability and subject specific skills in their chosen discipline. Students may wish to use the placement experience as a platform for the major project or future career.
It is the responsibility of individual students to find and secure a suitable placement opportunity. This should not normally involve more than two placements which must be completed over a minimum period of 10 months and within a maximum of 12 months. The placement must be approved by the Course Leader, prior to commencement to ensure its suitability. Students seeking placements will have access to the standard placement preparation activities offered by Student Engagement and Enhancement (SEE) group.
Read more about the postgraduate work placement scheme.
Optional modules only run if there is enough demand. If we have an insufficient number of students interested in an optional module, that module will not be offered for this course.
Many postgraduate courses at Kingston University allow students to take the option of a 12-month work placement as part of their course. The responsibility for finding the work placement is with the student; we cannot guarantee the placement, just the opportunity to undertake it. You may find securing a professional placement difficult as they are highly competitive and challenging, but they are also incredibly rewarding. It is very important to prepare and apply yourself if this is the route you wish to take. Employers look for great written and oral communication skills and an excellent CV/portfolio. As the work placement is an assessed part of the course, it is covered by a student's Student Route visa.
Find out more about the postgraduate work placement scheme.
Join this course at Kingston and you too could join the KU e-Racing team and help them drive for success in Formula Student year after year. It's a great chance to apply theory to a real workplace project, enjoy the thrills of appearing at a major racing circuit - and have something amazing to add to your CV.
IMechE's Formula Student is the largest annual student motorsport event in the world and is delivered in partnership with key industry players including Airbus, Jaguar Land Rover, Shell, National Instruments and Mercedes AMG Petronas. Ross Brawn OBE (Team Principal, Mercedes AMG Petronas F1 team) is the patron and the event is entered by 141 university teams from 34 countries across the globe.
With its real-world bias, Formula Student is viewed by the motor industry as the standard for engineering graduates to meet. In fact, many high-profile motorsports engineers have participated in Formula Student whilst at university including Andrew Shovlin, chief race engineer of Mercedes AMG Petronas F1 team and James Painter, engineering lead of vehicle integration working on the BLOODHOUND land speed record.
The week after the likes of Lewis Hamilton and Sebastian Vettel raced at the British Grand Prix, students from around the world competed in their own motorsport event at Silverstone in the Institution of Mechanical Engineers' Formula Student competition. Kingston University's KU e-Racing proved to be the only UK team with a viable electric vehicle - read how they got on.
You can also see the KU e-Racing car being assembled, the chassis being constructed and the car being transported to Silverstone, as well as glimpses of the business presentation made as part of the University's entry. Produced by students Karam Rajaby and Joseph Bannister (Television and Video Technology BSc(Hons)), Amy Nicole Tinker (Media Technology BSc (Hons)); and Luka Stokic (Automotive Engineering BSc(Hons)).
Watch out for their full-length documentary on Formula Student.
Students on this course can also get involved with the successful Kingston University motorsport team.
The course is taught by the Department of Mechanical Engineering. Staff have a wide range of experience across research and industry and continue to practice and research at the cutting edge of their discipline. This ensures that our courses are current and industry informed ensuring you get the most relevant and up to date education possible.
The Department has strong links with industry leaders, including Delphi, Lotus Engineering, MAN and Thales. Many of our innovative, hands on projects involve students as well as academics and receive national and global coverage.
Our applied approach to teaching is supported by dedicated laboratories for mechanical, automotive and motorsport engineering, including wind tunnels, state-of-the-art rapid prototyping and manufacturing machinery, a fully equipped materials lab, engine test cells, an automotive diagnostics lab featuring the latest industrial software packages, and a modern electronics/robotics lab with the recent addition of a robot and electronic equipment from National Instruments.
Our courses encompass applications from all areas of engineering, providing our students with the knowledge and flexibility they need to work across many industries, both in the UK and overseas.
Postgraduate students may run or assist in lab sessions and may also contribute to the teaching of seminars under the supervision of the module leader.
Our modern teaching environment
There is a wide range of facilities for practical work at our Roehampton Vale campus, where this course is based. You will have access to a modern environment with the latest technology and industry-standard equipment, including:
We also have a dedicated postgraduate workroom with high spec PCs and a range of software.
The £4 million Hawker Wing provides three floors of extra space for students and staff at Roehampton Vale, including improved learning and teaching facilities.
Depending on the programme of study, there may be extra costs that are not covered by tuition fees which students will need to consider when planning their studies. Tuition fees cover the cost of your teaching, assessment and operating University facilities such as the library, access to shared IT equipment and other support services. Accommodation and living costs are not included in our fees.
Where a course has additional expenses, we make every effort to highlight them. These may include optional field trips, materials (e.g. art, design, engineering), security checks such as DBS, uniforms, specialist clothing or professional memberships.
The market for mechatronic systems is continually evolving. Graduates from this programme will be prepared for senior technical and management positions in a range of industries, including:
The Faculty has a specialist employability team. It provides friendly and high-quality careers and recruitment guidance, including advice and sessions on job-seeking skills such as CV preparation, application forms and interview techniques. Specific advice is also available for international students about the UK job market and employers' expectations and requirements.
The team runs employer events throughout the year, including job fairs, key speakers from industry and interviews on campus. These events give you the opportunity to hear from, and network with, employers in an informal setting.
Our excellent industrial links have developed during many years and throughout many countries. Input from industry experts complements the teaching throughout the course.
We regularly review all our postgraduate courses to make sure that they are up-to-date, reflect industry needs and are comparable to other university courses. This programme is reviewed by an industrial panel, including National Instruments; Thales; Cadence; Texas Instruments; NXP; Atmel; and industrial bodies such as The IET, SEMTA and RAeS.
Engineering research at Kingston is organised into three established research centres and three emergent groups:
These research centres/groups provide focus for our research activities and encourage the cross-fertilisation of ideas across different areas of the Faculty. For further details about ongoing research activities, visit the Faculty website.
Many academic staff are engaged in a range of research and consultancy activities funded by the Research Councils, the European Union, the government, trade unions and industry. These activities ensure our staff are in touch with the latest industry thinking and bring best practice to your studies.
The information on this page reflects the currently intended course structure and module details. To improve your student experience and the quality of your degree, we may review and change the material information of this course. Course changes explained.
Programme Specifications for the course are published ahead of each academic year.
Regulations governing this course can be found on our website.